Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fluids Barriers CNS ; 20(1): 25, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013549

RESUMO

Blood-brain barrier (BBB) dysfunction occurs in many brain diseases, and there is increasing evidence to suggest that it is an early process in dementia which may be exacerbated by peripheral infection. Filter-exchange imaging (FEXI) is an MRI technique for measuring trans-membrane water exchange. FEXI data is typically analysed using the apparent exchange rate (AXR) model, yielding estimates of the AXR. Crusher gradients are commonly used to remove unwanted coherence pathways arising from longitudinal storage pulses during the mixing period. We first demonstrate that when using thin slices, as is needed for imaging the rodent brain, crusher gradients result in underestimation of the AXR. To address this, we propose an extended crusher-compensated exchange rate (CCXR) model to account for diffusion-weighting introduced by the crusher gradients, which is able to recover ground truth values of BBB water exchange (kin) in simulated data. When applied to the rat brain, kin estimates obtained using the CCXR model were 3.10 s-1 and 3.49 s-1 compared to AXR estimates of 1.24 s-1 and 0.49 s-1 for slice thicknesses of 4.0 mm and 2.5 mm respectively. We then validated our approach using a clinically relevant Streptococcus pneumoniae lung infection. We observed a significant 70 ± 10% increase in BBB water exchange in rats during active infection (kin = 3.78 ± 0.42 s-1) compared to before infection (kin = 2.72 ± 0.30 s-1; p = 0.02). The BBB water exchange rate during infection was associated with higher levels of plasma von Willebrand factor (VWF), a marker of acute vascular inflammation. We also observed 42% higher expression of perivascular aquaporin-4 (AQP4) in infected animals compared to non-infected controls, while levels of tight junction proteins remain consistent between groups. In summary, we propose a modelling approach for FEXI data which removes the bias in estimated water-exchange rates associated with the use of crusher gradients. Using this approach, we demonstrate the impact of peripheral infection on BBB water exchange, which appears to be mediated by endothelial dysfunction and associated with an increase in perivascular AQP4.


Assuntos
Barreira Hematoencefálica , Água , Ratos , Animais , Barreira Hematoencefálica/metabolismo , Água/metabolismo , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Aquaporina 4/metabolismo , Pulmão/metabolismo
2.
Blood ; 139(10): 1575-1587, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-34780600

RESUMO

Advances in our understanding of ADAMTS13 structure, and the conformation changes required for full activity, have rejuvenated the possibility of its use as a thrombolytic therapy. We have tested a novel Ala1144Val ADAMTS13 variant (constitutively active [ca] ADAMTS13) that exhibits constitutive activity, characterized using in vitro assays of ADAMTS13 activity, and greatly enhanced thrombolytic activity in 2 murine models of ischemic stroke, the distal FeCl3 middle cerebral artery occlusion (MCAo) model and transient middle cerebral artery occlusion (tMCAO) with systemic inflammation and ischemia/reperfusion injury. The primary measure of efficacy in both models was restoration of regional cerebral blood flow (rCBF) to the MCA territory, which was determined using laser speckle contrast imaging. The caADAMTS13 variant exhibited a constitutively active conformation and a fivefold enhanced activity against fluorescence resonance energy transfer substrate von Willebrand factor 73 (FRETS-VWF73) compared with wild-type (wt) ADAMTS13. Moreover, caADAMTS13 inhibited VWF-mediated platelet capture at subphysiological concentrations and enhanced t-PA/plasmin lysis of fibrin(ogen), neither of which were observed with wtADAMTS13. Significant restoration of rCBF and reduced lesion volume was observed in animals treated with caADAMTS13. When administered 1 hour after FeCl3 MCAo, the caADAMTS13 variant significantly reduced residual VWF and fibrin deposits in the MCA, platelet aggregate formation, and neutrophil recruitment. When administered 4 hours after reperfusion in the tMCAo model, the caADAMTS13 variant induced a significant dissolution of platelet aggregates and a reduction in the resulting tissue hypoperfusion. The caADAMTS13 variant represents a potentially viable therapeutic option for the treatment of acute ischemic stroke, among other thrombotic indications, due to its enhanced in vitro and in vivo activities that result from its constitutively active conformation.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Proteína ADAMTS13/genética , Animais , Anti-Inflamatórios/uso terapêutico , Fibrina , Fibrinolíticos/uso terapêutico , Infarto da Artéria Cerebral Média/patologia , Camundongos , Acidente Vascular Cerebral/tratamento farmacológico , Fator de von Willebrand/uso terapêutico
3.
Discov Immunol ; 1(1): kyac004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38566903

RESUMO

As the COVID-19 pandemic moves towards endemic disease, it remains of key importance to identify groups of individuals vulnerable to severe infection and understand the biological factors that mediate this risk. Stroke patients are at increased risk of developing severe COVID-19, likely due to stroke-induced alterations to systemic immune function. Furthermore, immune responses associated with severe COVID-19 in patients without a history of stroke parallel many of the immune alterations induced by stroke, possibly resulting in a compounding effect that contributes to worsened disease severity. In this review, we discuss the changes to systemic immune function that likely contribute to augmented COVID-19 severity in patients with a history of stroke and the effects of COVID-19 on the immune system that may exacerbate these effects.

4.
Int J Stroke ; 15(7): 722-732, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32618498

RESUMO

Anecdotal reports and clinical observations have recently emerged suggesting a relationship between COVID-19 disease and stroke, highlighting the possibility that infected individuals may be more susceptible to cerebrovascular events. In this review we draw on emerging studies of the current pandemic and data from earlier, viral epidemics, to describe possible mechanisms by which SARS-CoV-2 may influence the prevalence of stroke, with a focus on the thromboinflammatory pathways, which may be perturbed. Some of these potential mechanisms are not novel but are, in fact, long-standing hypotheses linking stroke with preceding infection that are yet to be confirmed. The current pandemic may present a renewed opportunity to better understand the relationship between infection and stroke and possible underlying mechanisms.


Assuntos
Betacoronavirus , Infecções por Coronavirus/complicações , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/complicações , Pneumonia Viral/diagnóstico , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/etiologia , COVID-19 , Infecções por Coronavirus/terapia , Humanos , Pandemias , Pneumonia Viral/terapia , Fatores de Risco , SARS-CoV-2 , Acidente Vascular Cerebral/prevenção & controle
5.
Structure ; 28(9): 1004-1013.e4, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32470317

RESUMO

Despite high-resolution crystal structures of both inactive and active G protein-coupled receptors (GPCRs), it is still not known how ligands trigger the large structural change on the intracellular side of the receptor since the conformational changes that occur within the extracellular ligand-binding region upon activation are subtle. Here, we use solid-state NMR and Fourier transform infrared spectroscopy on rhodopsin to show that Trp2656.48 within the CWxP motif on transmembrane helix H6 constrains a proline hinge in the inactive state, suggesting that activation results in unraveling of the H6 backbone within this motif, a local change in dynamics that allows helix H6 to swing outward. Notably, Tyr3017.48 within activation switch 2 appears to mimic the negative allosteric sodium ion found in other family A GPCRs, a finding that is broadly relevant to the mechanism of receptor activation.


Assuntos
Prolina/química , Rodopsina/química , Rodopsina/metabolismo , Células HEK293 , Humanos , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Conformação Proteica , Rodopsina/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Triptofano/química , Triptofano/genética , Tirosina/química , Tirosina/metabolismo
6.
Eur Respir J ; 53(3)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30655285

RESUMO

Chronic thromboembolic pulmonary hypertension (CTEPH) is an important consequence of pulmonary embolism that is associated with abnormalities in haemostasis. We investigated the ADAMTS13-von Willebrand factor (VWF) axis in CTEPH, including its relationship with disease severity, inflammation, ABO groups and ADAMTS13 genetic variants.ADAMTS13 and VWF plasma antigen levels were measured in patients with CTEPH (n=208), chronic thromboembolic disease without pulmonary hypertension (CTED) (n=35), resolved pulmonary embolism (n=28), idiopathic pulmonary arterial hypertension (n=30) and healthy controls (n=68). CTEPH genetic ABO associations and protein quantitative trait loci were investigated. ADAMTS13-VWF axis abnormalities were assessed in CTEPH and healthy control subsets by measuring ADAMTS13 activity, D-dimers and VWF multimeric size.Patients with CTEPH had decreased ADAMTS13 (adjusted ß -23.4%, 95% CI -30.9- -15.1%, p<0.001) and increased VWF levels (ß +75.5%, 95% CI 44.8-113%, p<0.001) compared to healthy controls. ADAMTS13 levels remained low after reversal of pulmonary hypertension by pulmonary endarterectomy surgery and were equally reduced in CTED. We identified a genetic variant near the ADAMTS13 gene associated with ADAMTS13 protein that accounted for ∼8% of the variation in levels.The ADAMTS13-VWF axis is dysregulated in CTEPH. This is unrelated to pulmonary hypertension, disease severity or markers of systemic inflammation and implicates the ADAMTS13-VWF axis in CTEPH pathobiology.


Assuntos
Proteína ADAMTS13/genética , Hipertensão Pulmonar/fisiopatologia , Embolia Pulmonar/fisiopatologia , Fator de von Willebrand/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Estudos de Casos e Controles , Doença Crônica , Endarterectomia , Feminino , Humanos , Hipertensão Pulmonar/genética , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Embolia Pulmonar/genética , Trombose/genética , Trombose/fisiopatologia
8.
J Biol Chem ; 292(14): 5760-5769, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28209710

RESUMO

Blood loss is prevented by the multidomain glycoprotein von Willebrand factor (VWF), which binds exposed collagen at damaged vessels and captures platelets. VWF is regulated by the metalloprotease ADAMTS13, which in turn is conformationally activated by VWF. To delineate the structural requirements for VWF-mediated conformational activation of ADAMTS13, we performed binding and functional studies with a panel of truncated ADAMTS13 variants. We demonstrate that both the isolated CUB1 and CUB2 domains in ADAMTS13 bind to the spacer domain exosite of a truncated ADAMTS13 variant, MDTCS (KD of 135 ± 1 0.1 nm and 86.9 ± 9.0 nm, respectively). However, only the CUB1 domain inhibited proteolytic activity of MDTCS. Moreover, ADAMTS13ΔCUB2, unlike ADAMTS13ΔCUB1-2, exhibited activity similar to wild-type ADAMTS13 and could be activated by VWF D4-CK. The CUB2 domain is, therefore, not essential for maintaining the inactive conformation of ADAMTS13. Both CUB domains could bind to the VWF D4-CK domain fragment (KD of 53.7 ± 2.1 nm and 84.3 ± 2.0 nm, respectively). However, deletion of both CUB domains did not prevent VWF D4-CK binding, suggesting that competition for CUB-domain binding to the spacer domain is not the dominant mechanism behind the conformational activation. ADAMTS13ΔTSP8-CUB2 could no longer bind to VWF D4-CK, and deletion of TSP8 abrogated ADAMTS13 conformational activation. These findings support an ADAMTS13 activation model in which VWF D4-CK engages the TSP8-CUB2 domains, inducing the conformational change that disrupts the CUB1-spacer domain interaction and thereby activates ADAMTS13.


Assuntos
Proteína ADAMTS13/química , Modelos Químicos , Fator de von Willebrand/química , Proteína ADAMTS13/metabolismo , Células HEK293 , Humanos , Ligação Proteica/fisiologia , Domínios Proteicos , Fator de von Willebrand/metabolismo
9.
Hum Mol Genet ; 26(2): 305-319, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28065882

RESUMO

Protein misfolding caused by inherited mutations leads to loss of protein function and potentially toxic 'gain of function', such as the dominant P23H rhodopsin mutation that causes retinitis pigmentosa (RP). Here, we tested whether the AMPK activator metformin could affect the P23H rhodopsin synthesis and folding. In cell models, metformin treatment improved P23H rhodopsin folding and traffic. In animal models of P23H RP, metformin treatment successfully enhanced P23H traffic to the rod outer segment, but this led to reduced photoreceptor function and increased photoreceptor cell death. The metformin-rescued P23H rhodopsin was still intrinsically unstable and led to increased structural instability of the rod outer segments. These data suggest that improving the traffic of misfolding rhodopsin mutants is unlikely to be a practical therapy, because of their intrinsic instability and long half-life in the outer segment, but also highlights the potential of altering translation through AMPK to improve protein function in other protein misfolding diseases.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Metformina/administração & dosagem , Degeneração Retiniana/genética , Retinose Pigmentar/genética , Rodopsina/genética , Proteínas Quinases Ativadas por AMP/biossíntese , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Proteínas Mutantes/genética , Células Fotorreceptoras/efeitos dos fármacos , Células Fotorreceptoras/patologia , Dobramento de Proteína/efeitos dos fármacos , Deficiências na Proteostase/genética , Deficiências na Proteostase/patologia , Ratos , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/tratamento farmacológico , Retinose Pigmentar/patologia , Rodopsina/química , Segmento Externo da Célula Bastonete/efeitos dos fármacos , Segmento Externo da Célula Bastonete/patologia , Ativação Transcricional/efeitos dos fármacos
10.
Proc Natl Acad Sci U S A ; 111(52): 18578-83, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25512499

RESUMO

A disintegrin and metalloprotease with thrombospondin motifs 13 (ADAMTS13) is a metalloprotease that regulates von Willebrand factor (VWF) function. ADAMTS13-mediated proteolysis is determined by conformational changes in VWF, but also may depend on its own conformational activation. Kinetic analysis of WT ADAMTS13 revealed ∼ 2.5-fold reduced activity compared with ADAMTS13 lacking its C-terminal tail (MDTCS) or its CUB1-2 domains (WTΔCUB1-2), suggesting that the CUB domains naturally limit ADAMTS13 function. Consistent with this suggestion, WT ADAMTS13 activity was enhanced ∼ 2.5-fold by preincubation with either an anti-CUB mAb (20E9) or VWF D4CK (the natural binding partner for the CUB domains). Furthermore, the isolated CUB1-2 domains not only bound MDTCS, but also inhibited activity by up to 2.5-fold. Interestingly, a gain-of-function (GoF) ADAMTS13 spacer domain variant (R568K/F592Y/R660K/Y661F/Y665F) was ∼ 2.5-fold more active than WT ADAMTS13, but could not be further activated by 20E9 mAb or VWF D4CK and was unable to bind or to be inhibited by the CUB1-2 domains, suggesting that the inhibitory effects of the CUB domains involve an interaction with the spacer domain that is disrupted in GoF ADAMTS13. Electron microscopy demonstrated a "closed" conformation of WT ADAMTS13 and suggested a more "open" conformation for GoF ADAMTS13. The cryptic spacer domain epitope revealed by conformational unfolding also represents the core antigenic target for autoantibodies in thrombotic thrombocytopenic purpura. We propose that ADAMTS13 circulates in a closed conformation, which is maintained by a CUB-spacer domain binding interaction. ADAMTS13 becomes conformationally activated on demand through interaction of its C-terminal CUB domains with VWF, making it susceptible to immune recognition.


Assuntos
Proteínas ADAM/química , Proteínas ADAM/sangue , Proteínas ADAM/genética , Proteína ADAMTS13 , Sequência de Aminoácidos , Substituição de Aminoácidos , Anticorpos Monoclonais Murinos/química , Ativação Enzimática , Humanos , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína , Púrpura Trombocitopênica Trombótica/enzimologia , Púrpura Trombocitopênica Trombótica/genética , Deleção de Sequência , Fator de von Willebrand/química , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
11.
J Biol Chem ; 288(47): 33912-33926, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24106275

RESUMO

Autosomal dominant retinitis pigmentosa (ADRP) mutants (T4K, N15S, T17M, V20G, P23A/H/L, and Q28H) in the N-terminal cap of rhodopsin misfold when expressed in mammalian cells. To gain insight into the causes of misfolding and to define the contributions of specific residues to receptor stability and function, we evaluated the responses of these mutants to 11-cis-retinal pharmacological chaperone rescue or disulfide bond-mediated repair. Pharmacological rescue restored folding in all mutants, but the purified mutant pigments in all cases were thermo-unstable and exhibited abnormal photobleaching, metarhodopsin II decay, and G protein activation. As a complementary approach, we superimposed this panel of ADRP mutants onto a rhodopsin background containing a juxtaposed cysteine pair (N2C/D282C) that forms a disulfide bond. This approach restored folding in T4K, N15S, V20G, P23A, and Q28H but not T17M, P23H, or P23L. ADRP mutant pigments obtained by disulfide bond repair exhibited enhanced stability, and some also displayed markedly improved photobleaching and signal transduction properties. Our major conclusion is that the N-terminal cap stabilizes opsin during biosynthesis and contributes to the dark-state stability of rhodopsin. Comparison of these two restorative approaches revealed that the correct position of the cap relative to the extracellular loops is also required for optimal photochemistry and efficient G protein activation.


Assuntos
Mutação de Sentido Incorreto , Dobramento de Proteína , Retinose Pigmentar/metabolismo , Rodopsina/metabolismo , Substituição de Aminoácidos , Animais , Bovinos , Células HEK293 , Humanos , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Retinaldeído/genética , Retinaldeído/metabolismo , Retinose Pigmentar/genética , Rodopsina/genética
12.
Methods Enzymol ; 522: 365-89, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23374193

RESUMO

G protein-coupled receptors (GPCRs) represent the largest family of membrane receptors and mediate a diversity of cellular processes. These receptors have a common seven-transmembrane helix structure, yet have evolved to respond to literally thousands of different ligands. In this chapter, we describe the use of magic angle spinning solid-state NMR spectroscopy for characterizing the structure and dynamics of GPCRs. Solid-state NMR spectroscopy is well suited for structural measurements in both detergent micelles and membrane bilayer environments. We first outline the methods for large-scale production of stable, functional receptors containing (13)C- and (15)N-labeled amino acids. The expression methods make use of eukaryotic HEK293S cell lines that produce correctly folded, fully functional receptors. We subsequently describe the basic methods used for magic angle spinning solid-state NMR measurements of chemical shifts and dipolar couplings, which reveal detailed information on GPCR structure and dynamics.


Assuntos
Bicamadas Lipídicas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Receptores Acoplados a Proteínas G/química , Sítios de Ligação , Meios de Cultura , Expressão Gênica , Células HEK293 , Humanos , Marcação por Isótopo , Ligantes , Micelas , Ligação Proteica , Estrutura Secundária de Proteína , Receptores Acoplados a Proteínas G/genética
13.
Proc Natl Acad Sci U S A ; 107(46): 19861-6, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21041664

RESUMO

Light-induced isomerization of the 11-cis-retinal chromophore in the visual pigment rhodopsin triggers displacement of the second extracellular loop (EL2) and motion of transmembrane helices H5, H6, and H7 leading to the active intermediate metarhodopsin II (Meta II). We describe solid-state NMR measurements of rhodopsin and Meta II that target the molecular contacts in the region of the ionic lock involving these three helices. We show that a contact between Arg135(3.50) and Met257(6.40) forms in Meta II, consistent with the outward rotation of H6 and breaking of the dark-state Glu134(3.49)-Arg135(3.50)-Glu247(6.30) ionic lock. We also show that Tyr223(5.58) and Tyr306(7.53) form molecular contacts with Met257(6.40). Together these results reveal that the crystal structure of opsin in the region of the ionic lock reflects the active state of the receptor. We further demonstrate that Tyr223(5.58) and Ala132(3.47) in Meta II stabilize helix H5 in an active orientation. Mutation of Tyr223(5.58) to phenylalanine or mutation of Ala132(3.47) to leucine decreases the lifetime of the Meta II intermediate. Furthermore, the Y223F mutation is coupled to structural changes in EL2. In contrast, mutation of Tyr306(7.53) to phenylalanine shows only a moderate influence on the Meta II lifetime and is not coupled to EL2.


Assuntos
Sequência Conservada/genética , Rodopsina/química , Rodopsina/metabolismo , Tirosina/metabolismo , Alanina/genética , Substituição de Aminoácidos/genética , Animais , Bovinos , Cristalografia por Raios X , Células HEK293 , Humanos , Ativação do Canal Iônico , Espectroscopia de Ressonância Magnética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Conformação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Transdução de Sinais , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...